The influence of subaquatic springs in lacustrine sedimentation: Origin and paleoenvironmental significance of homogenites in karstic Lake Banyoles (NE Spain)

Mario Morellón a,b,⁎, Flavio S. Anselmetti c, Blas Valero-Garcés d, Santiago Giralt e, Daniel Ariztegui f, Alberto Sáez g, M. Pilar Mata h, Fernando Barreiro-Lostres d, Mayte Rico d, Ana Moreno d

a Instituto de Geociencias (CSIC, UCM), Calle José Antonio Nováis, 2, 3ª planta, 3b, Facultad de Ciencias Geológicas, Univ. Complutense, 28040 Madrid, Spain
b Swiss Federal Institute of Aquatic Science and Technology, Eawag, Ueberlandstrasse 133, CH-8600 Dübendorf, Switzerland
c Institute of Geological Sciences and Oeschger Centre of Climate Change Research, University of Bern, Baltzerstrasse 1, CH-3012 Bern, Switzerland
d Department of Environmental Processes and Global Change, Pyrenean Institute of Ecology (IPE-CSIC), Campus de Aula Der, Avda Montañana 1005, E-50059 Zaragoza, Spain
e Institute of Earth Sciences Jaume Almera (ICTJA-CSIC), Carrer Lluís Sole i Subaris s/n, E-08028 Barcelona, Spain
f Section of Earth Sciences, University of Geneva, Rue des Maréchaux 13, CH-1205 Genève, Switzerland
g Department of Stratigraphy, Paleontology and Marine Geosciences, Universitat de Barcelona, C/ Martí Franques s/n, E-08028 Barcelona, Spain
h Instituto Geológico y Minero de España (IGME), C/ Calera 1, E-28760 Tres Cantos, Madrid, Spain

⁎ Corresponding author at: Instituto de Geociencias (CSIC, UCM), Calle José Antonio Nováis, 2, 3ª planta, 3b, Facultad de Ciencias Geológicas, Univ. Complutense, 28040 Madrid, Spain.
E-mail address: mario.morellon@igeo.ucm-csic.es (M. Morellón).

Abstract

Banyoles (42°08′N, 2°45′E) is the largest and deepest lake of karstic–tectonic origin in the Iberian Peninsula. The lake comprises two basins and six sub-circularly shaped sub-basins fed by subaquatic springs. Periods of intense groundwater inflow in the deepest sub-basins lead to the fluidization and re-suspension of previously deposited sediments and subsequent settling forming homogenite deposits on the southern basin intermediate platforms. The multiproxy analysis of sediment cores combined with high resolution seismic stratigraphy (3.5 kHz pinger and multi-frequency Chirp surveys) allows a precise reconstruction of depositional environments and related hydrological variability and groundwater inflow during the last ca. 7.6 cal kyr BP. According to the age model based on 137Cs, 210Pb and AMS 14C dating, homogenite deposition occurred between 7.2 and 5.5 cal kyr BP, stopped during the middle Holocene (5.5–2.8 cal kyr BP) and greatly increased during the last two millennia with a total of 17 homogenite layers individually up to 75 cm-thick. The onset of this unique sedimentation mode at ca. 3 cal kyr BP coincides with an increase in lake level, evidenced by the onlapping of fine-grained, distal sediments over coarser massive, carbonate-rich, littoral deposits. A detailed, multidisciplinary study of the homogenites (sedimentology, physical properties, high-resolution elemental geochemistry, mineral composition, grain-size, organic matter content and SEM) combined with seismic stratigraphy demonstrates that the fluidization events triggering the formation of the homogenites were caused by higher and more intense local groundwater inflow, related to increased rainfall during the Late Holocene and likely intensified by land use changes during the last millennium.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Groundwater constitutes an essential hydrological resource in Mediterranean areas characterized by a summer drought period and frequent negative hydrological balance phases, which are particularly threatened by global change (Younger et al., 2002; García-Ruiz et al., 2011). In these regions, aquifers are essential for sustaining human activities and limnic ecosystems (Edmunds et al., 2004; Álvarez-Cobelas et al., 2005; Shapley et al., 2005). The groundwater input to the hydrological balance is rarely quantified in most lakes, however, subaquatic springs are commonly identified as a significant source for groundwater in lake systems (Canals et al., 1990; Colomer et al., 2002; Assayag et al., 2008; Matter et al., 2010). Recently, such springs and associated pockmarks have been described and imaged thanks to high-resolution geophysical and limnological surveys (e.g., Lake Ohrid, Matter et al., 2010; Lake Kivu, Ross et al., 2014). In spite of their variable relative importance in the hydrological balance of these systems, subaquatic springs commonly supply cool and oxygenated waters, rich in ions and nutrients, leading to the establishment of particular subenvironments and specific habitats for endemic species within lake systems (Matter et al., 2010; Descy et al., 2012a).
Ecological and limnological responses to subaquatic springs are well-studied (e.g., Dead Sea [Ionescu et al., 2012], Lake Bogoria [Dadheech et al., 2013], Lake Kivu [Descy et al., 2012b]) and extensive research has been carried out on associated carbonate sedimentary features (i.e., microbialites, teepee structures, dia genetic iron-rich shoreline indicators and carbonate crusts) (Warren, 1982; Burne and Moore, 1987; Winter, 1999; Rosen et al., 2002, 2004). However, less attention has been paid to the physical effects of groundwater input in sedimentation and its potential to remodel significant amounts of sediments (Bloesch, 1995; Dragansits and Janda, 2003). Examples of fluidization and resuspension of offshore lake sediments and consequent re-deposition of thick ‘homogeneous’ layers, termed homogenites, have been exclusively described as a result of shaking and/or subaqueous mass-wasting slope processes caused by earthquakes (Beck, 2009). However, intense and focused groundwater input through subaquatic springs could be also be able to produce a similar effect in sedimentation, not yet described in detail in lake settings. Although these groundwater-fed lake basins often provide large, continuous sequences with high temporal resolutions, suitable for paleohydrological and paleoclimate reconstructions (Morellón et al., 2009; Valero-Garcés et al., 2014), an adequate understanding of sedimentary processes is essential to reconstruct the evolution of groundwater inputs, their impact in lake sedimentation and their role in homogenite formation (Shapley et al., 2005).

Lake Banyoles (NE Spain) belongs to a groundwater-fed karstic system and constitutes a unique example in the Iberian Peninsula of offshore sedimentation partly controlled by the activity of subaquatic springs. Geophysical and limnological surveys during the last decades have documented the resuspension and fluidization of sediments by focused groundwater inflow at the deepest sub-basins of the lake (Canals et al., 1990; Casamitjana and Roget, 1993), leading to the development of turbidity plumes (Serra et al., 2005). These ‘fluidization events’ have been related with episodes of intense rainfall in the recharge area of the aquifer feeding the lake (Soler et al., 2007, 2009). Although Banyoles has been extensively investigated from a limnological point of view, the impact of groundwater dynamics on the sediments across the lake, and the spatial and temporal extent of this impact at longer timescales than the last few decades, remains unknown. Moreover, the depositional history of the lake has been exclusively studied at the littoral areas of the sedimentary basin (Pérez-Obiol and Julià, 1994; Valero-Garcés et al., 1998; Cho Martínez, 2012; Höbig et al., 2012) and at emerged pre-Holocene paleolake deposits (Julià-Brugués, 1977; Leroy, 1990, 1997, 2008; Løvlie and Leroy, 1995), where first evidence of massive, homogene ous sediment deposits related to the activity of underwater springs was described (Leroy, 1990, 2008). However, these deposits were not investigated in detail from a sedimentological point of view.

This paper aims to fill this gap in the investigations carried out in Banyoles and provides a Holocene sedimentary reconstruction using offshore sediments with special emphasis on sedimentary processes associated with fluidization events related to higher groundwater input episodes through subaqueous springs. The combined use of high-resolution seismic stratigraphy and a multi-proxy analysis of sediment cores recovered at distal areas of the lake enable a precise reconstruction of the spatial extent, timing and different intensities of groundwater discharge. The associated sedimentary processes are evaluated in relation to climate variability and changes in land use during the last millennia.

2. Regional setting

2.1. Geological and geomorphological setting

Lake Banyoles (42°1′N; 2°4′E, 173 masl), located in the NE margin of the Iberian Peninsula, 20 km west of the Mediterranean Sea (Fig. 1A), lies in a tectonic–karstic basin (Julià, 1980) and is formed by several cone-like karstic depressions (Fig. 1B). The lake is located in the eastern South–Pyrenean Foreland Basin (Burbank et al., 1992; Bischoff et al., 1994) affected by widespread Neogene extension (Saula et al., 1994; Tassone et al., 1994). The bedrock comprises the mid Eocene Banyoles Formation, mainly composed of marine, organic- and pyrite-rich marls and mudstones, underlain by the Eocene Beuda Formation consisting of massive gypsum (200–300 m), and the 100 to 200 m thick Peraffa Formation dolostones (Barnolas, 1992; Mató i Palós et al., 1996; Serra-Kiel et al., 2003). The contact between these last two formations has led to a bedrock ‘de-dolomitization’ process due to gypsum dissolution, a particularly intense karstification mechanism responsible for the formation and collapse of the Lake Banyoles depressions (Bischoff et al., 1994). Karstic processes (e.g., collapse depressions, intermittent springs, karren fields) are still active in the lake catchment (Julià, 1980; Sanz, 1981; Canals et al., 1990), as demonstrated by the 12/11/1978 collapse, when a new sub-basin (‘Estanyol Nou’) was formed near to the southwestern shore (Höbig et al., 2012), or the 1989 collapse of the road 150 to 200 m north of Lake Banyoles, by normal concentric faults at Can Guixeres (Leroy, 1997).

Lake Banyoles is the last remnant of a larger lacustrine basin developed during Pliocene–Quaternary times, known as the Banyoles–Besalú system, which occupied 90 km² (Julià-Brugués, 1977; Canals et al., 1990). Travertine formations and calcareous lithologies are common, in both ancient terraces (Julia Brugués and Suc, 1980; Leroy, 1997, 2008) and present lacustrine deposits (Coma et al., 1987, 1988). The age of the travertine formation damming the eastern margin of the modern lake is ~120 to 45 kyr BP (Julià and Bischoff, 1991), which represents the potential maximum age of the lacustrine deposits accumulated within the basin.

The littoral zone of the modern lake (0–3 m water depth) is covered by a thin macrophyte vegetation belt of Phragmites, Schoenoplectus and Myriophyllum. Sediments range from travertines and calcareous sands in the littoral areas, to carbonate-rich silts and clays in the distal areas (Rieradevall and Roca, 1999).

2.2. Morphometry, hydrology and limnology of the lake

The lake has a N–S elongated shape and a surface of 118 ha. The lake is formed by 6 main circular-shaped sub-basins (B1 to B6), with steep margins and water depths ranging from 7.5 to 44 m, connected by shallower, flat platforms (ca. 20 m and 5–10 m water depths in the southern and northern areas, respectively) (Moreno-Amich and García-Berthou, 1989; Canals et al., 1990) (Fig. 1B). Karstic depressions confer a lobed shape to the lake shoreline, and a shallow (~12 m maximum water depth) and narrow (~500 m) sill in the center divides the lake into two basins, here referred as northern and southern ones (Fig. 1B).

The lake is hydrologically open and mainly groundwater-fed through subaquatic springs located in the deepest sub-basins of the southern basin (B1 and B2) (Moreno-Amich and García-Berthou, 1989; Canals et al., 1990). Surface water input derived from the 11.42 km² catchment drained by the creeks located in the western portion of the road 150 to 200 m north of Lake Banyoles, by normal concentric faults at Can Guixeres (Leroy, 1997).

Lake Banyoles is the last remnant of a larger lacustrine basin developed during Pliocene–Quaternary times, known as the Banyoles–Besalú system, which occupied 90 km² (Julià-Brugués, 1977; Canals et al., 1990). Travertine formations and calcareous lithologies are common, in both ancient terraces (Julia Brugués and Suc, 1980; Leroy, 1997, 2008) and present lacustrine deposits (Coma et al., 1987, 1988). The age of the travertine formation damming the eastern margin of the modern lake is ~120 to 45 kyr BP (Julià and Bischoff, 1991), which represents the potential maximum age of the lacustrine deposits accumulated within the basin.

The littoral zone of the modern lake (0–3 m water depth) is covered by a thin macrophyte vegetation belt of Phragmites, Schoenoplectus and Myriophyllum. Sediments range from travertines and calcareous sands in the littoral areas, to carbonate-rich silts and clays in the distal areas (Rieradevall and Roca, 1999).

The lake has a N–S elongated shape and a surface of 118 ha. The lake is formed by 6 main circular-shaped sub-basins (B1 to B6), with steep margins and water depths ranging from 7.5 to 44 m, connected by shallower, flat platforms (ca. 20 m and 5–10 m water depths in the southern and northern areas, respectively) (Moreno-Amich and García-Berthou, 1989; Canals et al., 1990) (Fig. 1B). Karstic depressions confer a lobed shape to the lake shoreline, and a shallow (~12 m maximum water depth) and narrow (~500 m) sill in the center divides the lake into two basins, here referred as northern and southern ones (Fig. 1B).

The lake is hydrologically open and mainly groundwater-fed through subaquatic springs located in the deepest sub-basins of the southern basin (B1 and B2) (Moreno-Amich and García-Berthou, 1989; Canals et al., 1990). Surface water input derived from the 11.42 km² catchment drained by the creeks located in the western portion of the lake has been quantified as 100 to 300 l/s for May–September 1984, whereas output through the canals at the eastern margin (Fig. 1C) ranges from 568 to 1080 l/s for the same period (Dutras et al., 1986; Canals et al., 1990). Thus, groundwater supplies 85% of the total water input (Casamitjana et al., 2006). Lake water in southern basin is characterized by a lower residence time and higher oxygenation levels than water in the northern lobe. Particularly, sub-basin B1 provides 90% of groundwater input (Serra et al., 2005). The other main sub-basins of the northern basin (Fig. 1B) have a lower groundwater input so that anoxic conditions and sulfide production at the hypolimni on occur (Guerrero et al., 1978; Garcia-Gil et al., 1993). Thus, the 8 sub-basins are connected by their epilimnetic waters, but their respective hypolimnions are isolated and show different anoxic periods, ranging from 1 to 12 months/year (Prat and Rieradevall, 1995).
Surface lake waters are sulphate and calcium-rich ([SO$_4^{2-}$] > [HCO$_3^-$] > [Ca$^{2+}$] > [Mg$^{2+}$]) (Bischoff et al., 1994), with an electrical conductivity of 1300 to 1400 μs/cm and a pH between 7 and 8.1 (MAGRAMA, 2006). Water temperature ranges from 8 to 25 °C depending on the water depth and season (Rieradevall and Roca, 1995). Oxygenation conditions are also spatially variable and depending of groundwater input, ranging from oxic (0–7 m water depth), to one month of anoxia (sub-basin B1, >12 m water depth), and to long-lasting anoxia (sub-basins B3 and B4, >12 m) (Rieradevall and Roca, 1995). The lake is monomictic, with water stratification from April to October. A chemocline is also present in sub-basins B1 and B4 at 19–20 and 13–17 m water depth respectively, which leads to long anoxic periods in the hypolimnion (Rieradevall and Roca, 1995).

Differences in the thermal inertia and incoming flux through the subaqueous springs, located in the northern and southern basins, move denser water during the winter season from the shallower northern to the deeper southern basin. This leads to a bottom current with a flow of 20,000 l/s and a velocity of up 12 cm/s that redistributes water between the two basins, replacing northern basin waters every ~5 days. This exchange constitutes the main current dominating circulation in the lake (Roget et al., 1993; Casamitjana et al., 2006).

Fig. 1. (A) Location of the Lake Banyoles within the Iberian Peninsula; (B) bathymetric map, basins and sub-basins (modified from Soler et al., 2009); (C) aerial photograph with seismic grids obtained with the Pinger 3.5 kHz source (yellow) and Edgetech profiler (red), with indication of the seismic profile displayed below (dashed line), long (dots) and short core (squares) locations; and (D) S-N seismic profile.
2.3. Groundwater and turbidity plumes

The lake constitutes a ‘trop-plein’ of a complex aquifer system whose recharge area is located in the Alta Garrotxa Range, 15 to 40 km northwards (Sanz, 1981; Brusi et al., 1990). The NE–SW trending Albanysà fault, east of the lake, constitutes a subvertical dam for the groundwater (Moreno-Amich and García-Berthou, 1989). Most of the deepest sub-basins (B1, B2, B4, B5 and B6) are filled with several meters of sediments maintained in suspension by the intense groundwater in-flows forming a sharp and horizontal upper sediment interface, known as the lutocline which is recognizable in seismic profiles (Canals et al., 1990) (Fig. 1D). These suspensions have particle concentrations varying from 0.18 to \(\leq 10^{-3} \) g/l and rather constant temperatures (\(\sim 19^\circ C \)) (Casamitjana and Roget, 1993). According to geophysical surveys and sedimentological analyses, sediments in sub-basins B1, B3 and B4 appear as ‘mobile’ particles in suspension, whereas they are usually denser and more consolidated in B2, resulting in an acoustic bedding at the bottom of this sub-basin (Colomer et al., 2002). The momentum of the underground spring and sediment grain-size determines the maximum height that the lutocline can rise to in each case (Casamitjana et al., 1996; Colomer et al., 1998). Fluctuations of the lutocline depths in B1, B3 and B4 are comparatively smaller than B2 and show simultaneous shifts (Casamitjana and Roget, 1993).

Most intense fluidization and re-suspension processes, and associated hydrothermal plumes, are restricted to the deepest sub-basins B1 and B2. Sub-basin B1 is fed by the largest groundwater flow (~500 l/s). Its sediment fill has a vertical thickness of 45 to 50 m and a sediment density of 100 to 130 g/l (Colomer et al., 2002). Its lutocline oscillates from 29.2 to 32.0 m water depth (Serra et al., 2005) (Fig. 1D). In contrast, B2 has a sediment fill with maximum vertical thickness of 32 m and experiences periodic large fluctuations in sediment density from 280 to 180 g/l and larger lutocline migrations (from 25 to 45 m). Sediment fluidization processes occur episodically associated with particular intense rainfall events in the aquifer recharge area (average monthly values 1.5 to 4.5 times larger than the long term mean, 1970–1999) (Colomer et al., 2002). Thus, sub-basin B2 acts as an overflow of the groundwater system.

Due to the difference between temperature of the lutocline and the hypolimnetic water immediately above B1, an upward-directed permanent hydrothermal plume develops (Colomer et al., 2001). This plume carries a suspension of particles from the lutocline up to a maximum height, which varies depending on the stratification depth of the water column. During the mixing period, this plume reaches the surface of the lake, spreading laterally and forming a ~7 m-thick turbidity cur-

As the two basins of the lake (N and S) are separated by a shallow sill (Fig. 1B), sediments transported by turbidity plumes are restricted during the stratification period to the southern basin. In contrast, during the mixing period, particles can reach the surface of the lake, spreading laterally and subsequently settling across the entire lake bottom (Soler et al., 2009). However, sedimentation in the northern basin is not significantly affected by re-suspended sediments and carbonate-rich silts and sands with abundant encrusted charophyte stems and other calcitic bioclasts (e.g., ostracods, gastropods) are predominant (Serra et al., 2005). Thus, the effect of turbidity plumes on sedimentation is mostly restricted to the southern basin.

3. Materials and methods

A geophysical survey was carried out in April 2011 using a high-resolution, single-channel seismic system with a center frequency of 3.5 kHz (GeoAcoustic pinger source) and a EdgeTech Chirp 3100-P multi-frequency profiler, covering 22 km and 14 km of seismic lines, respectively. This dense grid consisting of ~36 km of seismic lines provides a mean spatial resolution of ~100 m between each line (Fig. 1C). Seismic processing workshop software was used for the processing of the pinger data (bandpass filter, flat gain) and the resulting seismic data set was interpreted using the Kingdom Suite software.

In May 2011, three pairs of overlapping sediment cores (BAN-11-1A, 2A and 3A) with maximum lengths of ~13, 12 and 5 m, respectively, were recovered using an Uwitec® percussion coring equipment installed on a floating raft. This research focuses on core 1A, recovered in the flat platform between sub-basins B1 and B2, at ca. 21 m water depth. Additional coring sites 2A and 3A are located in the northernmost area of the lake and sub-basin B3, respectively. Three short, gravity cores were obtained to recover the uppermost part and the sediment/water interface of the three sequences. Seven additional short cores (BAN-12-1, 2, 3, 4, 5, 6 and 8) were recovered in July 2012 along a transect between B1, B2 and the location of the longest core BAN-11-1A (Fig. 1C). Cores recovering suspended sediments of sub-basins B1 and B2 (BAN-12-1 and 2) were maintained in upright position until sediments were stable and settled down, before excess water was eliminated. The uppermost 60 cm of the BAN-11-1A sequence was sub-sampled in the field every 1 cm for \(^{137}\text{Cs}\) and \(^{210}\text{Pb}\) dating.

Physical properties (magnetic susceptibility, gamma density, P-wave velocity) were measured in core BAN-11-1A with a Geotek Multi-Sensor Core Logger (MSCL) every 1 cm. All the cores were subsequently split in two halves and imaged with a digital camera. The lightness (L*) parameter was obtained from the core pictures using Adobe Photoshop CS and ImageJ software. Lithotypes were defined after visual and microscopic smear slide observations, applying the methodology described in Schnurrenberger et al. (2003) (Table 1).

Elemental composition of core BAN-11-1A sediments was obtained by using an AVAA TECH XRF core scanner at a resolution of 5 mm and under two different working conditions: i) with an X-ray current of 0.8 mA, at 10 s count time and 10 kV X-ray voltage for the measurement of Al, Si, P, Cl, Ar, K, Ca, Ti, V, Cr, Mn and Fe; and ii) with an X-ray current of 2 mA, at 30 s count time and 30 kV X-ray voltage for the measurement of Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Au, Pb, Th and U. The XRF results are expressed as counts per second (cps) and only chemical elements with mean cps over 1500 were considered to be statistically significant.

Grain size of short cores BAN-12-1 and 2 was measured every 4 cm. Core BAN-11-1A was measured at variable resolutions: for grain size: ~8 cm at the uppermost 610 cm and ~25 cm at the lowermost part of the sequence, for TOC and TIC every 3 cm, and for X-ray diffraction every 9 cm. Grain size was determined using a Malvern Mastersizer 2000. Samples were pre-treated with 15% hydrogen peroxide on a hot plate at 80 °C to eliminate the organic matter, a dispersant agent and ultrasonic treatment were used prior to measurement. Total organic carbon (TOC) and total inorganic carbon (TIC) were measured with a LECO
Table 1
Lithotypes defined for the Lake Banyoles sequence, including sedimentological features, main compositional parameters (TIC = total inorganic carbon, TOC = total organic carbon, GS = grain size and mineralogical content (%), including: quartz (Qtz), chlorite (Chl), illite (Ill) and calcite (Cc)) and depositional subenvironments and/or process interpreted for each case.

<table>
<thead>
<tr>
<th>Lithotype</th>
<th>Sedimentological features</th>
<th>Composition parameters</th>
<th>Depositional subenvironment/process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banded and laminated 1</td>
<td>Dark-gray to black, massive to banded, carbonate-rich silts with diatoms Fine grained carbonate mud composed by up to 10 μm hexagonal calcite grains with abundant to frequent ca. 50–60 μm reworked occasional reworked littoral carbonate-rich particles (ostracods, charophytes and carbonate coatings). Frequent ca. 25 μm detrital carbonate particles, plant remains and diatoms, locally abundant. Occasional quartz grains and ~20 μm pyrite frambooids.</td>
<td>TIC = 3.3%–6.7% TOC = 0.0%–1.2% Mean GS = 5–18 μm Mineralogy: Cc = 42.3%, Ill = 32.5%, Chl = 17.7%, Qtz = 7.4%</td>
<td>Deep, monomictic, occasionally anoxic brackish to freshwater lake with permanent, low-concentration turbidity plumes</td>
</tr>
<tr>
<td>Laminated fcs comprising alternating mm to 1 cm thick black and light-gray fine-grained silts Black laminae: fine-grained (up to 10 μm) hexagonal to sub-hexagonal calcite grains with abundant diatoms, up to 100 μm reworked littoral carbonate particles and frequent 20–30 μm detrital grains of quartz and carbonates. Light gray laminae: fine-grained, up to 10 μm irregular, reworked calcite crystals with frequent up to 40 μm elastic quartz and non-biogenic carbonates. Occasional to frequent to up to 50 μm reworked littoral carbonate-rich particles.</td>
<td>TIC = 3.9%–6.2% TOC = 0.2%–1.1% Mean GS = 6.0–8.4 μm Mineralogy: Cc = 39.5%, Ill = 32.7%, Chl = 19.5%, Qtz = 8.2%</td>
<td>Relatively deep, carbonate-producing lake with seasonal anoxic hypolimnetic conditions</td>
<td></td>
</tr>
<tr>
<td>Gray, barely laminated to massive, carbonate-rich silts with evidences of bioturbation 30–50 μm reworked biogenically shaped detrital grains of quartz and carbonates. Frequent fine-grained, up to 10 μm calcitic mud.</td>
<td>TIC = 4.4%–9.3% TOC = 0.3%–1.0% Mean GS = 4.8–18.9 μm Mineralogy: Cc = 51.6%, Ill = 26.5%, Chl = 15.1%, Qtz = 6.9%</td>
<td>Shallow, carbonate-producing brackish lake with anoxic conditions</td>
<td></td>
</tr>
<tr>
<td>Massive 4</td>
<td>Light gray, massive fine-grained, carbonate-rich silts, occurring as mm to cm-thick intercalations or cm to dm-thick homogeneous layers Up to 10 μm fine-grained irregularly-shaped calcite mud with abundant reworked diatoms. Frequent up to 50 μm reworked carbonate particles, sub-circular calcareous algae and pyrite frambooids. Occasional plant remains.</td>
<td>TIC = 4.3%–6.8% TOC = 0.1%–0.9% Mean GS = 5–12.6 μm Mineralogy: Cc = 44.7%, Ill = 31.7%, Chl = 16.2%, Qtz = 7.4%</td>
<td>Fluidization events and associated periodical and intense turbidity plumes</td>
</tr>
<tr>
<td>5</td>
<td>Light gray/yellowish, massive, fine-grained, up to 1 m thick fining upwards sequences ranging from coarse to fine-grained silts Dominant 10–15 μm reworked, sub-rounded to hexagonal calcite grains with reworked littoral carbonate-rich particles (up to 50–60 μm); more frequent towards the base.</td>
<td>TIC = 4.5%–7.3% TOC = 0.3%–0.6% Mean GS = 8.2–13.0 μm Mineralogy: Cc = 40.9%, Ill = 32.7%, Chl = 18.8%, Qtz = 7.7%</td>
<td>Mass-wasting processes</td>
</tr>
<tr>
<td>6</td>
<td>Light gray/yellowish, massive, fine-grained, carbonate-rich sands 100–300 μm sub-rounded, biogenic, reworked carbonate particles with abundant up to 100 μm coarse, high relief detrital grains of quartz and non-biogenic carbonates. Abundant fine-grained matrix composed of up to 10 μm sub-rounded calcite crystals.</td>
<td>TIC = 7.2%–8.8% TOC = 0.4%–0.5% Mean GS = 65.5 μm Mineralogy: Cc = 57.9%, Ill = 18.1%, Chl = 15.4%, Qtz = 8.6%</td>
<td>Mass-wasting processes</td>
</tr>
</tbody>
</table>

SC 144 DR elemental analyzer. Whole sediment mineralogy was characterized by X-ray diffraction with a Bruker-AXS D5005 (working conditions: Cu Kα, 40 kV, 30 mA and graphite monochromator) and relative mineral abundance was determined using peak intensity following the procedures described in Chung (1974a,b). Results are expressed in percentages with respect of the total dry weight of the sample.

Scanning electron microscope images were taken of dried sediment samples of cores BAN–11–1A, BAN–12–1 and –2 under low-vacuum conditions in an environmental scanning electron microscope FEI inspect on uncoated fragmented samples. Backscattered electron (BSE) images were obtained in order to detect compositional differences of the components as gray level contrast. In addition, energy dispersive X-ray spectrometry (EDS) analysis was performed when necessary.

The chronology of the lake sequence is based on: i) 9 accelerator mass spectrometry (AMS) 14C dates from core BAN–11–1A, analyzed at the ETH-Zürich Laboratory of Ion Beam Physics and at DirectAMS radio-carbon services (Seattle, USA) (Table 2) and on ii) 137Cs and 210Pb dating by gamma spectroscopy at Eawag (Dübendorf, Switzerland). Excess (unsupported) 210Pb was calculated as difference between total 210Pb and 226Ra for individual samples. Corrected radiocarbon dates were converted into calendar years BP with Calib 6.0 software using the INTCAL 09 calibration curve (Reimer et al., 2009), selecting the median of the 95.4% distribution (2σ probability interval) (Table 2). The age–depth relationship was constructed by linear interpolation of the 1963 AD 137Cs
maximum activity peak and calibrated radiocarbon dates using Analyses (Paillard et al., 1996).

4. Results

4.1. Seismic stratigraphy

In spite of frequent gas masking throughout the lake basin, particularly in the northern basin, locally high penetration into the sub-surface down to the acoustic basement allowed tracking of the bedrock morphology in many parts of the lake. Maximum seismic penetration reached up to 20 m in the northern basin of the lake (Fig. 1D), and 18 m in the southern basin (Fig. 2), where substratum was not reached. These two basins – separated by a shallow sill with no seismic penetration (Fig. 1D) – show a different seismic stratigraphy due to their complex bathymetry and variable sedimentological processes. The southern basin is characterized by the flat bottom areas in B1 and B2 (Fig. 1B, D), corresponding to the lutoclines (Canals et al., 1990), and extensive and rather flat areas at ~20 m water depth between and around these two main depressions, displaying moderate seismic penetration (Fig. 2). The bedrock surface was identified in a previous lower-frequency survey (150–2000 kHz) (Canals et al., 1990) and is characterized by local irregularities and discrete steps and sharp edges, consistent with the karstic origin and active dynamics of the two depressions.

Seismic stratigraphic analysis of our 3.5 kHz survey allowed the identification of three major seismic units (SA–SC; Fig. 2) and several seismic horizons, which have been tracked through the southern basin. These horizons and units were correlated with the core lithostratigraphy (see below). A constant acoustic velocity of 1500 m/s based on the MSCL measurements has been used for the seismic-to-core correlation (Fig. 2A).

The oldest seismic unit (unit SA) reaches more than 10 m thickness and is only recognizable in areas located close to the eastern lake margin. It is characterized by rather continuous, mid-amplitude reflections and intercalated seismicity more transparent units up to 2 m thick. The lowermost part of core BAN-11-1A reached the uppermost part of this seismic unit (Fig. 2A).

Unit SB is visible only in few areas and consists of continuous low-amplitude reflections with the intercalation of two higher amplitude reflections, coinciding with rather homogeneous lithology (Fig. 2A).

The youngest seismic unit (unit SC) has been mapped through larger areas of the southern basin and reaches ~10 m in thickness in the central areas of the platforms. Seismic facies are characterized by the alternation of high-amplitude, laterally continuous reflections and transparent layers, slightly increasing basinward in thickness up to ~1 m thick (Fig. 2). The upper part of this seismic unit onlaps over SA and SB units and corresponds in sediment core BAN-11-1A with a lithological change to sediments with higher and more variable density (Fig. 2A).

4.2. Sedimentology

4.2.1. Lithotypes and core stratigraphy

Six lithotypes have been defined in the long (BAN-11-1A) and short (BAN-12-1 to 8) sediment cores recovered from the southern areas of Lake Banyoles, on the basis of detailed sedimentological descriptions, smear-slide and SEM microscopic observations and compositional analyses. According to textural and compositional criteria, these lithotypes have been grouped into two main categories: i) banded to laminated and ii) massive (Table 1, Figs. 2–4).

Banded and laminated lithotypes (Fig. 4A–C) are composed of variable amounts of: i) mud-size (10–15 μm) elongated low magnesium calcite (LMC) crystals derived from direct precipitation from lake waters (Fig. 5B), ii) reworked biogenic particles from the littoral areas (Chord fragments, micrite oncoids, ostraocods and gastropod fragments of different sizes (~50 μm)); iii) diatoms and other organic components (Fig. 5A, C); and iv) detrital particles, including carbonates, quartz grains and clay minerals (mainly illite and chlorite) derived from the weathering and erosion of the soils and bedrock in the watershed (Figs. 3, 5A). Grain-size distribution is dominated by the silt fraction, with mean values ranging from 5 (lithotype 1) to ~20 μm (lithotype 3) (Table 1, Fig. 3).

Massive lithotypes (Fig. 4D–F) occur as: i) up to 120 cm thick, fine to medium-sized sequences, ranging from carbonate-rich sands (lithotype 6, ~65 μm mean grain size) to fine-grained silts (lithotype 5, ~10 μm mean grain size), capped by clay-sized particles at the top. These sediments are more carbonate-rich than banded and laminated lithotypes (Fig. 3) and contain higher amounts of coarse and fine-grained particles (from sands to silts) of reworked components (fragmented bioclasts, sub-rounded grains) (Fig. 5D–F). They are restricted to the lowermost part of the recovered succession and deposited by turbidity currents caused by the collapse of littoral areas (mass-wasting deposits) (Figs. 3, 4F), ii) ‘Homogenites’ (lithotype 4) occurring as 2 to ~75 cm-thick layers lacking any clear vertical grain-size distribution, composed of poorly sorted, fine-grained silts with mean sizes ranging from 6 to 12 μm (Figs. 3, 4E). These layers are likely deposited after the fluidization of sediment particles maintained in suspension at the deepest sub-basins of the lake (B1 and B2) and they are more abundant in the upper part of the sequence. They are described in detail below.

According to their lithology (Table 1, Fig. 3), the sedimentary succession in the southern basin of Lake Banyoles has been divided into three main lithological units (LA, LB, LC) matching with facies associations.

Unit LA (1298 to 970 cm core depth) is characterized by the presence of carbonate-rich, silty lithotype 3 at the base (Figs. 3, 4C), leading to an alternation between more, fine-grained lithotype 1 and relatively thin beds of massive lithotype 4 at the middle of this unit. A thick mass-wasting deposit (~120 cm), with a sandy layer at the base (lithotype 6) and massive lithotype 5 occurs in the uppermost part of this interval (Figs. 3, 4F). This unit represents the transition from a relatively shallow,
carbonate producing depositional environment with bioturbation and thus, oxic conditions (lithotype 3) to a relatively deeper setting (lithotype 1) accompanied by intensification of groundwater inflow (lithotype 4) and mass-wasting activity (lithotype 6).

Unit LB (972 to 610 cm core depth) is characterized by the deposition of carbonate-rich, silty lithotype 3 (Figs. 3, 4C, Table 1), interbedding mm-thick layers of massive silts. This unit deposited in a shallow, carbonate producing, oxic depositional environments with abundant littoral fauna and variable detrital input.

Unit LC (610 to 0 cm core depth) starts with the deposition of banded to laminated lithotype 2, reflecting more oxygen-depleted conditions associated with more distal/offshore deeper depositional environments than unit LB (Figs. 3, 4B, Table 1). Upcore, sediments are composed by an alternation of cm-thick fine-grained sediments interval (lithotype 1) and thick layers of homogenites (lithotype 4) (Fig. 4D, E). This unit represents dominant distal deposition at the coring site away from the slope of the margin of the lake, with relatively low oxygenation conditions. The succession of lithotypes 3, 2 and 1 suggests a progressive increase in lake level, confirmed by the seismic onlapping of unit C onto B (Fig. 2). The deposition of up to 17 homogenite layers, with a maximum thickness of ~75 cm, also reflects an abrupt intensification of groundwater activity during unit LC. The decrease in frequency and thickness of lithotype 4 layers in the uppermost part of the succession is interpreted as a decrease in groundwater activity in more recent times, accompanied by increased carbonate and organic content (Figs. 3, 6A).
4.3. Seismic to core correlation and depositional evolution

Seismic to core correlation enables a basin-wide reconstruction of the main stages in the Holocene depositional history of Lake Banyoles (Fig. 2A).

On the basis of seismic facies and the alternation of density contrasts, seismic unit SA is interpreted as a sedimentary succession characterized by the intercalation of massive lithotypes (4, 5 and 6) within a sequence from distal-fine grained lithotype 1 to littoral carbonate-rich lithotype 3 (Figs. 2A, 3). Deposition of mass-wasting deposits and turbidites – as the one 1 m thick turbidite (lithotypes 5 and 6) at the top of this unit – could have been more frequent during an early stage of development of the southern basin depressions with more active karstic collapses. Additionally, several relatively thin (up to 25 cm-thick) homogenites (lithotypes 4 and 5) also occur at the lowermost part of this unit (Figs. 2A, 3).

According to lithology, low-amplitude reflections with the intercalation of two higher amplitude reflections in SB are interpreted as the dominance of acoustically homogeneous, carbonate-rich lithotype 3 deposits with frequent clastic intercalations. A basinward increase in thickness (from ~4 m in coring location to more than 6 m in more distal areas) might have been related to the occurrence of mass-wasting deposits at the lower part of the recovered sequence (Fig. 2).

Finally, seismic facies observed in uppermost unit SC correspond to the alternation between lithotype 1 and thick homogeneous lithotype 4 layers, characterized by higher and constant density values (Fig. 2A). The onlapping of this unit above lowermost ones (A, B) suggests an increase of lake level associated with the deposition of more fine and distal lithotypes 1 and 4; higher groundwater flow (main water source of Lake Banyoles) is likely associated with these periods of higher lake level. Good lateral continuity of reflections and thickening of seismically transparent units towards the deepest sub-basin B2 suggests that the origin of homogeneous lithotype 4 is related to depositional processes around this sub-basin (Fig. 2).

4.4. Age model

To construct the age model, a total of 9 radiocarbon dates from core BAN-11-1A (Table 2) was used. Most of the dated samples correspond to bulk organic matter due to the absence of terrestrial organic macroremains. A large reservoir effect is suspected as recent sediments (44.5 cm depth) yielded an uncorrected age of 5460 ± 35 14C yr BP. To determine this reservoir effect and their likely variability through time, we used two couples of dates, each of them from the same stratigraphic levels: i) at the top of the sequence,
characterized by sedimentation under relatively deep conditions, similar to present-day (lithotypes 1 and 4), comparing 137Cs maximum activity peak of 1963 AD and a radiocarbon date on bulk organic matter (reservoir effect = ~5470 years); and ii) at the base of the core, with predominantly shallow-water conditions (lithotype 3), comparing two radiocarbon dates derived from a terrestrial macro-remain (charcoal) and bulk organic matter (reservoir effect = ~3025 years) (Table 2).

The estimated reservoir effects for the top and the base of the core were subtracted from radiocarbon dates made on bulk organic matter at lithological units LC and LA–LB, respectively. A consistent result was obtained in lowermost units A and B, with a rather constant sedimentation rate of ~0.1 cm/year (Fig. 7A). The comparatively higher reservoir effect obtained for the uppermost unit C, characterized by higher lake levels, might be explained by higher input of dissolved carbon from groundwater, likely higher during this recent stage. Variations in groundwater flow and potential reworking of organic particles from the deepest sub-basins B1 and B2 might also be responsible for the radiocarbon reversals occurring within unit A. Thus, the three radiocarbon dates of units A and B were considered for the chronology of the sequence, while all the other dates were rejected (Table 2, Fig. 7A).

Corrected dates were calibrated into calendar years and the age–depth relationship was constructed by linear interpolation (Fig. 7A). Event layers, deposited instantaneously and represented by massive lithotypes 4, 5 and 6 (i.e., homogenites in lithological units LA and LC (Fig. 7A, B) and the mass-wasting deposit at the top of unit A), were subtracted from the age model. According to this, the Lake Banyoles sequence spans the last ~7600 cal years BP. The uppermost unit LC was deposited during the last ~2800 cal years. The age–depth relationship shows an abrupt increase of sedimentation rate at the transition between units LB and LC, from 0.1 cm/year to 0.23 cm/year, including event layers (Fig. 7A). The abundance of these homogenites in the
upper unit explains this sedimentary rate change (Fig. 7B). The internal chronology for the uppermost unit, between the uppermost validated date (~2800 cal yrs BP) and the 1963 AD maximum 137Cs activity peak, remains unclear due to the lack of dates. Three different models can be used as an approximation: model 1) an extrapolation of 137Cs inferred sedimentation rate throughout the interval containing the homogenites; model 2) an interpolation between 137Cs peak and valid date (2800 cal yrs BP) at the uppermost part of unit B; and model 3) an interpolation between 137Cs peak and lowermost (not valid) radiocarbon date of unit C. According to these different age models, the occurrence of homogenites could be restricted to the periods 1840–1938 AD, 380–1600 AD or 1340–1720 AD, respectively (Fig. 7B).

4.5. Sedimentological and geochemical characterizations of homogenites

Lithotype 4 is dominant throughout the uppermost part of the sequence (lithological unit LC) (Figs. 3, 6A) and is also present occasionally at the lowermost unit LA, recovered in the platform between deepest sub-basins B1 and B2. These intervals are defined by their regular color, texture and composition, with minor or no internal variations. Compared to intercalated lithotype 1, they are characterized by a lighter color (higher L* values, >60), higher magnetic susceptibility (MS), higher density and a slightly coarser grain size, as evidenced by higher mode (~6 μm) and mean values (6 to 12 μm) (Figs. 3, 4E, 6A).

These homogenites are also characterized by a slightly higher organic and carbonate content (as recorded by TIC, calcite and higher Ca and Sr values) (Figs. 3, 6A). Consequently, they have a relatively lower concentration of silicilastic minerals (quartz and clay minerals) and elements associated with this fraction (Al, Si, K, Ti, Zr, Fe, Mn) as summarized by lower Ti/Ca values (Fig. 6B). Other geochemical properties characterizing lithotype 4 are: i) a lower Sr/Ca ratio, likely revealing a lower proportion of aragonite, common in biogenic particles mostly reworked from littoral, carbonate-produce-producing areas of the lake; ii) higher S values; and iii) a higher Fe/Mn ratio, likely indicating more local anoxic conditions during the deposition of these layers (Fig. 6A).

Detailed inspection of SEM images supports previous textural and compositional analyses (Fig. 3) and reveals: i) slightly coarser grain size in homogenites than facies 1 (Fig. 5A, D), ii) more evidence of transport and reworking in homogenites (broken diatoms, irregularly shaped grains, etc.) (Fig. 5D–F), iii) a higher content of well-developed, endogenic and regular calcite crystals in lithotype 1 (Fig. 5B), iv) a higher content of pyrite framboids in homogenites likely related to higher S concentrations (Fig. 5E) and v) the exclusive presence of the most fragile terrigenous components (e.g., plant remains) in offshore/distal deposits of lithotype 1 (Fig. 5C). Moreover, reworked planktonic calcareous algae remains exclusively occur in the homogenites of lithotype 4 (Fig. 5E).

Suspended sediments recovered below the lutoclines of the deepest sub-basins B1 and B2 show a very similar sedimentary features compared to homogenites, characterized by light gray colors (slightly reddish in B1 and bluish in B2) (Fig. 4G, H). Both homogenites and sediments from these sub-basins are, when compared with offshore/distal lithotype 1, characterized by higher carbonate content as reflected by higher Ca/Ti ratios (Fig. 6B). Average mean grain sizes in B1 (core BAN-12-2) and B2 (core BAN-12-1) average 8.6 and 9.6 μm, respectively, slightly coarser than in the homogenites (6.5 μm).

5. Discussion

5.1. Homogenites and fluidization events

Textural and compositional analyses of lithotype 4 deposits show a strong homogeneity along the whole layer, particularly visible within uppermost unit LC (Figs. 3, 6A). Good lateral correlation of these ‘homogenites’ between long and short cores (Fig. 8) and inspection of seismic lines (Fig. 2) show that these deposits, absent in the northern basin of Lake Banyoles, appear clearly ‘thinning’ towards the edges of the southern basin and ‘ponding’ offshore towards deepest sub-basins B1 and B2 (Figs. 2, 8). These layers are characterized by transparent seismic facies with no significant lateral changes (Fig. 2). The origin of homogenites is usually attributed to allochthonous (i.e., distal part of a turbidite) initiated by a mass-wasting process in littoral areas turning into hyperpycnal (turbidity currents with bedload and suspended load) or autochthonous sources (liquefaction, resuspension) (Beck, 2009).

Turbidites are usually characterized by single, fining upwards sequences (Hsu and Kelts, 1985; Schnellmann et al., 2005; Girardclos et al., 2007). However, in Banyoles, only the homogeneous layer located at the top of lithological unit LA displays these particular sedimentological features (Figs. 2A, 3, 4F) and thus, is interpreted as a turbidite deposit likely triggered by a mass-wasting episode. On the other hand, considering the location of core BAN-11-1A, less than 100 m from the lake shore, the presence of coarser grain particles at the base of these deposits would be also expected if the area source was the littoral zone of the lake, as described in other similar karstic lakes in the Iberian Peninsula (Morellón et al., 2009; Valero-Garcés et al., 2014).

In contrast to turbidite deposition, formation of homogenites in upper unit C involves liquefaction in the deeper sinkholes, resuspension of sediments and vertical transport and settling of the particles in the
Fig. 6. (A) X-ray Fluorescence (XRF) scanner data of lithologic unit LC. Element concentrations (Al, Si, Ti, Fe, Mn, Ca, Sr, S), expressed as counts per second, and Ti/Ca, Sr/Ca and Fe/Mn ratios are indicated. Core image, sedimentary units and sedimentological profile are also included (see legend in Fig. 2). Homogenites are indicated by horizontal blue bands. (B) Bipolar plot of Ca vs. Ti relationship along lithotypes 4 (homogenites) and 1 and 2 and suspended sediments from short gravity cores BAN-11-1 and 2.
Fig. 7. (A) Chronological model of the composite sequence of Lake Banyoles, formed by long cores BAN-11-1A and short core 1A-1G, based on the linear interpolation of AMS 14C dates (black and white dots) and 1963 AD maximum 137Cs peak (star). Material used for dating and rejected dates are also indicated in the legend. Different models proposed for the uppermost part (1, 2 and 3) correspond to red, green and blue lines, respectively. Homogenites and turbidite event layers are indicated by horizontal blue and orange bands, respectively. (B) 137Cs and 210Pb activity profiles for the uppermost 70 cm of the sequence. (C) Detail of age/depth relationships along the uppermost unit C.
platform areas. In fact, these mechanisms of transport and deposition have been described for most of the deep sub-basins of the lake, with particular intensity for sub-basins B1 and B2 as a result of intense groundwater flow (Serra et al., 2002; Soler et al., 2009). Fluidization and resuspension processes in lake sediments can also result from shaking caused by earthquakes. However, this process should be rejected since this region has a low to moderate seismic activity related to some Pyrenean Range faults and only a few earthquakes have been described (Secanell et al., 2004). The only relatively intense (Mw = 6.5) earthquake recorded during historical times occurred in 1427 AD, with the epicenter located ~22 km SW to the lake (Olivera et al., 2006) and likely caused shaking in the lake basin. Nevertheless, given the low frequency of intense earthquakes and the high frequency of homogenite events, seismic activity in the area cannot be considered as the exclusive potential triggering mechanism for the deposition of this high number of homogenites.

Comparison of homogenites with sediments accumulated at the deepest sub-basins (B1 and B2), corresponding to cores BAN-12-1 and 2, reflects many textural and compositional similarities from the macroscopic scale, as observed in core images (Figs. 3, 4B) to the microscopic level, as observed in SEM images. These homogenites are also similar to the “homogeneous sections” described by Leroy (2008) in the early Pleistocene sections of Banyoles paleolake, likely deposited by a similar mechanism. Although the range of variation in grain size is relatively small in general, and within unit C in particular, homogenites are slightly coarser (Fig. 3), with values closer to BAN-12-1 and 2, averaging 8.6 and 9.6 μm, respectively. From the compositional point of view, Ti/Ca ratios of lithotype 4 and short cores BAN-12-1 and 2 are also similar and generally lower than lithotype 1 (Fig. 6B). Thus, a common sediment source between B1 and B2 and homogenites is suggested. The marginal location of core BAN-11-1A within the flat platform between B1 and B2 might explain this decreasing grain size from B1 and B2 (8.6 μm and 9.6 μm), as coarsest particles transported by turbidity plumes do not probably reach this area, as predicted by previous studies (Serra et al., 2002, 2005).

According to recent limnological monitoring, there is a permanent contribution of sediment particles derived from turbidity plume developed above B1 (Colomer et al., 2001; Serra et al., 2005). Particle

Fig. 8. (A) Interpreted composite seismic profile between deepest sub-basins B1 and B2 with the location of short and long cores and interpreted deposits of homogenites derived from B1 (orange) and B2 (blue) sub-basins. (B) Correlation panel of short gravity cores (BAN-12-1, 2, 3, 4, 5, 6 and 8) and long core BAN-11-1A along a transect between sub-basins B1 and B2. Orange and blue-shaded areas represent correlation between homogenites derived from B1 and B2, respectively. (C) Core locations on the seismic grid in an aerial photograph of Lake Banyoles.
5.2. Chronology and paleoenvironmental significance of rainfall episodes in the recharge area of the aquifer as the most suspension of sediments in sub-basin B2 as a result of particularly in- the lake and B1. This depositional pattern suggests dominantly towards sub-basin B2 and get thinner towards the edge of homogenites (re- the most likely depositional mechanism able to produce homogenites. sociated with the variable diameter of karstic conducts within B2, this is the expected variability in the thicknesses display a high range of variability (from 2 to 76 cm) and more than 1 cm of sediments per year in the marginal areas of the plat- order of magnitude higher than B1), so that it is able to accumulate part of the succession) and ii) banded to laminated lithotype 2 (lower part of the succession). Finally, the exclusive validation of the lowermost radiocarbon date within unit LC is arbitrary as all the others were rejected for the potential recycling of material derived from resuspension (Table 2, Fig. 7).

A fluctuating, long-term increase in lake level in Banyoles is evi- denced by the onlapping of unit LC over units LA and LB, containing shallower deposits (Figs. 2, 3). This is also supported by the existence of a submerged early Neolithic settlement in the eastern shore of the lake (La Draga site). This archeological site is constituted by lakeshore type houses dated as old as ~7200 cal BP, by radiocarbon (Bosch et al., 2000; Tarrús, 2008), and implies that lake level was up to 1.5 m lower than the current level during the Early Neolithic.

A drastic change in depositional environments occurred at the base of Unit C, at ~2.8 cal ka BP, and inaugurated a new lake dynamics favorable to homogenite formation. Although the timing is coherent with a large in- crease in humidity – particularly in southern Spain (Martín-Puertas et al., 2009) – documented at the onset of the Iberian–Roman Humid Period (ca. 2.5 cal ka BP), moisture conditions have been quite variable during the last two millennia in the Iberian Peninsula in general (Moreno et al., 2012) and NE Spain in particular (Morellón et al., 2012). Thus, a direct, exclusive climate driven hydrological change for the deposition of homogenites can be ruled out. However we cannot discard the possibility that changes in the karst functioning with new preferential areas for spring flow brought by the onset of this humid period could have become perma- nent and favored homogenite formation during the last three millennia.

The presence of several homogenites at the lowermost part of the recovered sequence, between ~5450 and 7200 cal yrs BP suggests that, apart from the autogenic evolution of these karstic depressions described by Canals et al. (1990), an external hydrological mechanism would be required for such a depositional change. In fact, no homogenites have been identified near to the other sub-basins of the lake by geophysical surveys and sediment cores. Thus, a higher, local groundwater discharge likely caused by a faster recharge of the aquifer might have activated sub-basin B2, causing these episodic, more intense fluidization events and associated turbidity plumes in Lake Banyoles during the last millennium. Without a more detailed age model, the onset of homogenite deposition could have started as early as the humid Iberian–Roman Period or as late as Medieval times. In the second case, it would have been coincident with the human settlement of the area and associated changes in land use and lake hydrology. The foun- dation of Sant Esteve Monastery in the town of Banyoles (Sanz i Alguacil, 1991) in the early 9th century AD led to large changes in the lake and the watershed, as the construction of an artificial drainage sys- tem (five artificial outlets and several dikes in the eastern shore of the lake) to control lake level. Moreover, intense deforestation and farming affected the catchment drainage and permeability. A local expansion of agriculture occurred in relation to the foundation of another Roman- esque monastery in the town of Besalu (960 AD), located in the re- charge area of the aquifer (Sanz, 1981).

Deforestation caused by the important expansion of farmlands in the region and associated increase in soil permeability in the recharge area of the aquifer might have led to a faster recharge of the karstic system feeding Lake Banyoles, increasing its rapid hydrological response to intense rainfall episodes responsible for fluidization episodes in sub-basin B2 and favoring the deposition of homogenites. Higher groundwater inflow through the spring located in sub-basin B2 could be responsible for more intense fluid- ization events and associated turbidity plumes. Progressive farmland aban- donment and associated reforestation during the mid to late 20th century and/or groundwater extraction might have lowered water table, decreasing the intensity of fluidization events in B2 sub-basin during recent times and thus, preventing the deposition of homogenites.

6. Conclusions

Recent sedimentary processes in karstic Lake Banyoles are strongly influenced by the effect of groundwater activity, which leads to
fluidization, re-suspension and mainly vertical transport and gravity of sediment particles forming homogenite deposits accumulated in the platforms between deepest sub-basins B1 and B2. These processes are permanent in B1 and periodic in B2, respectively. Based on high-resolution geophysical surveys and detailed sedimentological and geochemical analyses of several cores, we document a large variability in the intensity and frequency of these transport processes and the subsequent deposition of homogenite layers during the last millennium.

The ~7.6 cal ky BP recovered sequence of Lake Banyoles has record an increase in lake level after ~2800 cal yrs BP, as indicated by geochemical analysis (Girona) and Club Natació Banyoles for their collaboration in this research. We thank coring assistance in this research. We thank coring assistance in this research.

Acknowledgments

Financial support for research was provided by the Spanish Inter-Ministry Commission of Science and Technology (CICYT), through the projects GLOBALKARST (CGL2009-08415) and GRACCIE-CONSOLIDER (CSD2007-00067). Additional funding was provided by INTIMATE-COST through a travel grant ‘Short Term Scientific Mission, COST Action ES907’ in 2011 at IPE-CSIC and University of Barcelona (Spain). M. Morellón and F. Barreiro held JAE-DOC and JAE-PREDOC, pre and postdoctoral contracts, respectively, both co-funded by C.S.I.C. and the European Social Fund. We acknowledge the Town Hall of Banyoles and postdoctoral contracts, respectively, both co-funded by C.S.I.C.

References
