The earthquake in Unterwalden on September 18, 1601:
A historico-critical macroseismic evaluation

GABRIELA SCHWARZ-ZANETTI, NICOLAS DEICHMANN, DONAT FÄH, DOMENICO GIARDINI,
MARIA-JOSE JIMENEZ, VIRGILIO MASCIANDRI, RETO SCHIBLER & MICHAEL SCHNELLMANN

Key words: Earthquake, macroseismic, diastem, Central Switzerland, 17th century, historico-critical investigation, rockfall, Renward Cysat

ABSTRACT

The present study is part of the new Earthquake Catalogue of Switzerland (ECOS). It combines historical information clearly categorized according to its quality, with the aim of assessing the intensity and magnitude of the 1601 earthquake in Unterwalden. On the basis of eyewitness testimonies, supplemented by copies of lost sources, the epicenter can be located in Unterwalden, with an epicentral intensity of VIII and a moment magnitude of 6.2. Consequently, the 1601 earthquake is the strongest known event in central Switzerland of the post millennium and among the seven strongest events in Switzerland during the last millennium.

INTRODUCTION

During the years 2000–2002 the Swiss Seismological Service at the Institut of Geophysics, ETHZ, performed a historico-critical and macroseismic revision of the Earthquake Catalogue of Switzerland (ECOS). Today the historico-critical qualification of sources is generally accepted in seismology as "conditio sine qua non", since a check of the previously used earthquake compilations for the Early and High Middle Ages resulted in a very large number of errors (Alexandre 1990: 6). Consequently, macroseismic analysis of documents should be based mainly on reports written by eyewitnesses. These documents have to be checked considering the observer, the date, place and description of the event as well as the lapse of time between the event and its recording (Vogt 1979; Alexandre 1984, 1990a; Stucchi et al. 1998: 1, 12). Copies of lost documents may be included in the discussion as uncertain pieces of information. The data provided by the historico-critical review was transformed into the European Macroseismic Scale EMS 98 (Grüntal 1998).

In the course of the revision of the catalogue, the earthquake in Unterwalden on September 18, 1601 was of special interest due to its size and reported effects. However, information on it can be supplemented only because the majority of compilers already knew the most important testimony of an eyewitness. This already allowed for a reliable assessment of the macroseismic intensity at an early stage of research. It was the Lucerne scientist and city clerk Renward Cysat (1545–1614) who, as an eyewitness, produced at the end of December 1601 a long report on this earthquake that is unique in its details. Cysat's report was published by Schmelzer in 1846, by Schmid in 1969 and by Papastamatiou in English in 1983. The numerous and mainly correct assessments of the event depend mostly on this report. The earthquake was discussed for example in the compilations of Volger (1857), Montandon (1942/43), and Ortolli (1997/98), and the information can be found in the French earthquake database Sisfrance, as well as in Bertrand (1756), Schuchter (1708) and other compilations. The assessment of the epicentral intensity varies for different compilations between VIII and IX. Thus the event has long been recognized as belonging to the strongest earthquakes of the last millennium in Switzerland. The main goal of this investigation was to increase the number of Swiss eyewitness reports.

INSTITUTE OF GEOPHYSICS, ETHZ, HONGERBERG, 8095 ZURICH, SWITZERLAND

The earthquake in Unterwalden on September 1801 441
Date and Time: September 18, 1601, around 1:45 a.m.

The simultaneous use of two calendar systems in Switzerland between 1584 and 1812 (Grotefeld 1991: 24-27) created misunderstandings as far as dating of the 1601 event is concerned. In the protestant cantons of Switzerland it was dated in the old Julian style (night of September 7 – 8) and in the catholic cantons in the contemporary Gregorian style (night of September 17 – 18). Other errors occurred, as for example in the copy of an unknown source from Stans in which the date is given by mistake as September 15 (StAASZ, PA 13, Sig. Kyd, Bd. 2: 330).

The year 1600 can often be traced back to a misprint in the book of Spon (1602: 140-142) about the history of Geneva. Supplementary court records from Lucerne (SHALZ: AKT 17 890) confirm the date 1601. They refer to the behavior of people returning after the earthquake from a festival in Sarnen (Durrer 1920: 59).

The statements about the exact time of the quake are inconsistent. A number of the awakened eyewitnesses erroneously thought that it was before midnight and dated the event to September 17 in Gregorian style. However, the majority of the accounts refer to one and two o'clock in the morning of September 18. The main eyewitness, Renward Cysat from Lucerne, put down the hour as “a short time before two o’clock”, as does Chusstrath (Scheenegg 1855: 193) from Strasbourg with “a quarter of an hour before two o’clock”. They are both confirmed by observers from St. Gallen (StBSSG, Cod. Sang. 1162), Starnheim (StAZH, E III 01173), Lausanne (ACVD: DG 288: 217) and other locations. An observer in Conso seems to fix the hour in the Italian style further: “— alle 6: ore di notte —” (Paravicini 1884: 105). Only the Bieler Rathsporobstödti differs in its indication of one o’clock: “Als die Glocken ein Uhr schlugen” (Blösch 1875: 59-60). But to fix the event more precisely than “around one quarter before two o’clock” would overtax the technical possibilities of the 17th century.

More difficult is the measurement of the duration of the event because of the insufficient methods of the observers. In earlier centuries short periods of time were assessed by well-known prayers. So the earthquake was felt in Strasbourg for the duration of a Paternoster or a Credo (Scheenegg 1855: 193). The anonymous author in the book of Blaurnr wrote about an incredible duration of two hours (StBSSG, Cod. Sang. 1162). According to Cysat the duration of the main shock can be assessed at several minutes because he describes the waking by the earthquake and the following discussion about the phenomenon. And he is the only observer who described a weak aftershock a quarter of an hour later. The rockfall from the mount Bürgenstein into Lake Lucerne followed immediately after the main shock. A letter supplement in Cysat’s report defined the duration of the aftershock sequence in Unterwalden as September 1601 to November 1604.

A confusion of seismological and meteorological phenomena, e.g. with a storm, can be excluded because Cysat described the night in Arth as still and clear; the noise, wind and dust started after the earthquake. Bartholomäus Anhorn at Maienfeld (Sprecher 1992: 290) and Chusstrath in Strasbourg (Schneeegg 1855: 193) described the same meteorological situation although during the 10th to the 20th of September wind from the north was blowing most of the time (Pfister 1884), which is also confirmed by the court records of Lucerne (StALU: AKT 17 890) for the afternoon of the event.

Location

Renward Cysat located Unterwalden as the most severely hit region. Here several houses and churches collapsed and most of the stoves were destroyed. Further damage is described in primary sources, especially around Lake Lucerne, in Zurich (Gerber 1602: 32), Schaffhausen (Burgauer 1651: 430), St. Gallen (StBSSG: Cod. Sang. 1162) and Maienfeld (Sprecher 1992: 290). Archaeological surveys in Zug, Oberwil on the Lake of Zug, and Flüeli Raan reveal damage which can be interpreted with a certain reliability to have been caused by the 1601 earthquake (Zug Archaeological Service, ZUGAD). At Somvix as well as in Chur (Arslou 1877: 168), Basel (Gross, 1624: 228), Biel (Blösch 1875: 59-60), Geneva (Spon 1682: 140-42) and Lausanne (ACVD: DG 288:217) the shock was felt strongly although damages are not reported.

In so far as the ICOV-Project is concerned, it was not possible to investigate reports on observations outside Switzerland. But Cysat describes the area in which the earthquake was felt as Switzerland, Germany, the Netherlands, Burgundy and Italy, without indications about his sources. Chusstrath in Strasbourg (Scheenegg 1855: 193) was in possession of unknown information from Basel and Frankfurt. The database SisFrance marked the boundary of this area with Cologne, Munich, Reggio and Lyon. An interesting report in the Italian compilation by Baratta (1901) about a destructive earthquake in Isime in the valley of Gressoney (40 kilometers south of Zermatt) with the date “September 1600” (sic) could not be investigated further.

Damage distribution

The main shock of September 18 produced several rockfalls in central Switzerland. Of these, however, only those on the mount Hahten near Engelberg and the mount Burgenstein are described. Bartholomaitius Keckermann (1607, 1611) reports rockfalls on both sides of the Burgenstein. The latter caused a high wave in Lake Lucerne, adding to the previous wave caused by the earthquake so as to damage the shores and trigger subaqueous landslides. Ongoing limnogeologcal investigations recognized such phenomena in the Vitznau basin (Schnellmann et al. 2002).

The wave in Lake Lucerne caused the river Reuss in Lucerne to flow back six times during the first hour after the earthquake, with the result that each time the riverbed was empty for several minutes and the mills were stopped (Cysat 1669: 886; Meyer von Schaunese, ZHBLU). This horrifying phenomenon was immediately interpreted as an obvious sign of the anger of God. Until 1604 quite a number of weaker
Tab. 1. Some of the most important Swiss intensity site points

<table>
<thead>
<tr>
<th>name</th>
<th>latitude</th>
<th>longitude</th>
<th>I min.</th>
<th>I max.</th>
<th>Iw</th>
<th>historical quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNTERWALDEN</td>
<td>46.90</td>
<td>8.40</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>B</td>
</tr>
<tr>
<td>FLUEELI RANFT</td>
<td>46.87</td>
<td>8.27</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>BECKENRIED</td>
<td>46.94</td>
<td>8.48</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>ZURICH</td>
<td>47.37</td>
<td>8.54</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>LUCERNE</td>
<td>47.05</td>
<td>8.29</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>OBERWIL B. ZUG</td>
<td>47.13</td>
<td>8.51</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>SCHAFFHAUSEN</td>
<td>47.72</td>
<td>8.63</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>STANS</td>
<td>46.96</td>
<td>8.36</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>ZUG</td>
<td>47.17</td>
<td>8.52</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>OBERRICKENBACH</td>
<td>46.88</td>
<td>8.44</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>B</td>
</tr>
<tr>
<td>BASEL</td>
<td>47.56</td>
<td>7.59</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>BRUNNEN</td>
<td>47.00</td>
<td>8.60</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>ENGELBERG</td>
<td>46.82</td>
<td>8.45</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>SOLOTHURN</td>
<td>47.21</td>
<td>7.53</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>ST. GALLEN</td>
<td>47.42</td>
<td>9.37</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>MAIENFELD</td>
<td>47.02</td>
<td>9.53</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>DINHARD</td>
<td>47.56</td>
<td>8.76</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>CANTON GLARUS</td>
<td>46.98</td>
<td>9.06</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>RUEMLANG</td>
<td>47.45</td>
<td>8.53</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>STEIN AM RHEIN</td>
<td>47.67</td>
<td>8.86</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>SUMVTG</td>
<td>46.77</td>
<td>8.88</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>UNTERSTAMMHEIM</td>
<td>47.65</td>
<td>8.79</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>KILCHBERG ZH</td>
<td>47.32</td>
<td>8.55</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>APPENZELL</td>
<td>47.32</td>
<td>9.41</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>GENEVA</td>
<td>46.21</td>
<td>6.14</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>ARTH</td>
<td>47.07</td>
<td>8.54</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>CHUR</td>
<td>46.85</td>
<td>9.53</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>FRAUENFELD</td>
<td>47.56</td>
<td>8.90</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>BIEL/BIENNE</td>
<td>47.14</td>
<td>7.25</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>COMO</td>
<td>45.81</td>
<td>9.08</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>LAUSANNE</td>
<td>46.52</td>
<td>6.63</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>A</td>
</tr>
</tbody>
</table>

* Intensity: minimum (min), maximum (max) and most probable (Iw)
* A: primary source, eyewitness; B: secondary source, incomplete sources, C: uncertain source, copy of an unknown source, archaeological reports.

shocks and few damaging events followed, but further historical material is lacking.

The damage noted in the documents was used to assign site intensities in the European Macrosismic Scale, 1998: III (weak), IV (widely observed), V (strong), VI (slightly damaging), VII (damaging), VIII (heavily damaging), IX (destructive) (Grünthal 1998). For every site we determined a minimum (Imin), a maximum (Imax) and a most probable intensity (Iw). It was possible to assess 38 sitepoints in Switzerland.

Unterwalden: Intensity VII-VIII

Renzward Cysat’s report on the damages in Unterwalden in the translation by Papastamatiou (1983: 1250): “Although the cata-

The earthquake in Unterwalden on September 1600: 443
larly intense. The churches in Beggentried had been rebuilt two
years previously and now they would again have to be recon-
structed; ...”1 (annotations see page 448)

Felix Donati Kyd (1793–1809) a historian and compiler
from Brummen, copied out of a lost collection of manuscripts
by Bünti in Stans (StASZ, PA 13, Sig. Kyd, Bd. 2: 330) and re-
ported similar phenomena of rockfalls and a horrifying noise
in the mountains, a destroyed chapel in Oberrikenbach and a
chapel in Stans that was carried away by a landslide: “Erd-
beben Anno 1601. In der Nacht zwischen 1 und 2 Uhr nach
 des hl. Kreuzstag im Herbstmonat [September 15, error in the
original] erhob sich der entsetzliche, und zuommen sehr
schädliche Erdbeben; thutе sonderlich Schaden an Oefen,
Kamina und Gemäuergebäuden. Zuо Stans hinter dem
Capuciner-Kloster hat er eine wohlgezierte Kapelle in dem
Stentbach genannt, mit einem Erdbruch völlig niedergerrissen
und von dem Grund über einen Reim hinzunter geschleift, dass
keine Zeugenschaft mehr davon geblieben. Desgleichen ist
die Kapelle zu Oberraschen auch im Erdbebens verfallen.
(...) Es verursachte dieses Erdbadem ein so grausam und
erschreckliches Getöse in den Gebirgen, und Holzwäldern mit
Rüimen und Steinrölzen, das sich jedermann mit grossem
Schrecken gleichsam eines gänzlichen Untergangs versehen.
Dieser Erdbheim wurde noch öfter malen gespürt bis nach
Maria Lichtmess tag (2.2.).”

The Engelberg monastery does not meet the expectations
of providing more descriptions, probably because of its eco-
nomic difficulties at the time in question. A short notice
records gallows that had to be repaired because of the earth-
quake (Heer 1975: 200), and in the church history of Caspar
Lang printed in 1692 there is a report without indication of

1 Annotations see page 448

444 G. Schwartz-Zanetti et al.
source about "1000 feet of rocks" which fell down from the Habnorn east of Engelberg. Finally, in the chapel of Pilisli Ranft an altar seems to have been repaired following quake damage (Durrer 1920: 944).

The strangest sources are the court records of Lucerne (StA LU: AKT 17 890) on the behavior of three drunken men in Stanssdad. After the earthquake one of them made jokes about a crack in the wall of a chapel that were felt to be blasphemous and caused him to be brought to justice. But apart from this crack in the chapel, we find only few indications about minor incidents during the earthquake, such as a candle falling in a pub and two stones falling down from the roof of the same building.

The most severe damage caused by the earthquake and related rockfalls hit the Canton of Unterwalden followed by the region around Lake Lucerne. The site intensities are assessed as between VII and VIII (Table 1).

Lucerne: Intensity VII

According to Cystus, chimneys and tiles fell and walls cracked in the whole of Lucerne. However, most seriously affected was the so-called little town, a part of Lucerne built on stakes in marshland. We have indicated known destroyed buildings on the map of Lucerne designed by Martinius Martini in 1597 (Fig. 1). "The two masonry towers of the monastery (2) which stood further behind, alongside the encircling city wall, had been severely shaken; as a result they had shifted more than half a foot away from the wall. Then we came to the next tower at the gateway to the town which was called the Oberthur (1). Here the roofing along with the dome and the sideclock (built onto a section of masonry which jutted out over the street) all this had been knocked over and had fallen in the direction of the town onto the roof of the tower. The roof had been broken under the impact. The seven people who lived in the tower had been in great peril. The clock had been thrown right into the town. The whole tower suffered very serious damage and multiple cracks were showing everywhere. As a result, it was no longer safe to remain in the vicinity. It was decided that the whole building would have to be demolished and rebuilt. The next tower was called the Kätscherthum (5); this tower had also been subject to shaking and many small crevices and cracks were visible. The third domed tower along by the ditch (moat) had been damaged on the roof and the walls - may it soon be repaired." (Parapastahianu, 1983: 1249)

Lake Lucerne and Zug: IV VI-VII

Apart from the church of Beekenried, already mentioned, various other cases of damage have been reported around Lake Lucerne. In the Kyd collection in the Cantonal Archives of Schwyz there is a copy of a bill for repairs to the roof and in the choir of a chapel at Ingenbohl dating from 1601 (StA SZ-PA 13, Slg. Kyd, 2). The reason for the repair is not mentioned – it was probably too obvious at the time: "Anno domini 1601 jar han ich heiney ianer und katzer iob der zit der kobalbin uf ingbol voigt den halben deil an der kobalben schaden halb gagen der strass lassen decken und den teil am kor ...". At the end of the 16th century the archives of Alvord burnt down and it seems that they actually do not hold original information about the event of 1601. The archeological service of the Canton of Zug (ZUGAD) has noticed cracks in the wall of the castle in Zug and a crack under the chapel of Oberwil that might have been caused by the event of 1601.

The Protestant theologian and philosopher Bartholomäus Keckermann from Dang helped around Switzerland in September and October of the year 1601 and published his report in 1607. It contains the only notice about a rockfall on the southern side of the Bürgenstock: "On the other side of this same mountain, where the people of Unterwalden live, some part of the mountain was thrown down which killed seven of the inhabitants of that region"3.

Along the shores of Lake Zug and Lake Lucerne cracks in the ground were observed and in the area of Vitznau as well as

The earthquake in Unterwalden on September 1601 445
Numerical modelling reveals that slumps of this size can induce of up to 3 meters high water waves (Schnellmann et al. 2002). In 1601 A.D., numerous slumps coincided with the rockfall from Bürgenstock and the induced waves added up to produce the water movements described in historic documents.

The seismic profile across the Vitznau basin (Lake Lucerne) images a slump deposit related to the 1601 earthquake (for location of the profile see figure 2B), indicated in gray shadings. The sediment affected by slumping is outlined in black. Whereas the undisturbed basin fill is acoustically laminated, slump deposits are characterized by a chaotic to transparent seismic facies that lacks continuous reflectors. At the foot of the northern slope, the deep-reaching chaotic seismic facies indicates deformation of the basin sediment by the impact of the slump masses. In the central part of basin, the slumped material lies on top of undisturbed basin sediments. In the deepest, southern part of the basin, the slump deposits are directly overlain by a megaturbidite, which is imaged by a transparent seismic facies. The Map of Chüürrichter and Vitznau basins (Lake Lucerne), Fig. 2B, shows the distribution and thickness of slump deposits related to the 1601 earthquake (indicated in gray shadings). Hachured areas mark the extent of megaturbidites directly overlaying the slump bodies. Correlation between individual slump deposits was achieved using seismic-stratigraphic methods. Bathymetric contour interval is 10 m (in figure caption).
North and East Switzerland: Intensity V-VII

Eyewitnesses in Zurich, Maienfeld, St. Gallen and Schaffhausen attest weaker damages. A poem by pastor Gerber in Bülach records that the Grossmunster in Zurich suffered several cracks without collapsing (Gerber 1602). The cracks were repaired immediately after the event. “Nor shall I omit how the silent vault of the noble church in the city of Zurich cracked severely – but the Lord prevented the ruin. Meanwhile the magistrate Fries orders the ready workers to speed up the renovation; and already the church is more resplendent on every side.” Descriptions of the event in Zurich in copies of earlier documents give different accounts, but we presume that at least some minor damage occurred. Pastors in Rümlang (StAZH: E III 099.1) and Dinhard (StAZH: E III 027.2) have made notes about the quake without mentioning any damage.

The pastor Bartholomäus Anhorn in Maienfeld reports a roaring in the air, destroyed chimneys and chickens falling from their perches (Sprecher 1992). In St. Gallen an anonymous author has left a notice about some destroyed chimneys (StBSG: Cod. Sang. 1162). Johann Burgauer at Schaffhausen made the same observation. He even reported 46 destroyed chimneys in his town (Burgauer 1651: 430). In the village of Stammheim near Schaffhausen a pastor confirms the earthquake observation, but without noticing any destruction (StAZH: E III 0117.3).

Northwest Switzerland: Intensity V

Johannes Gross published a history of Basel in 1624 and described vibrations in the city hall. Only Volger (1857) mentioned damage in the city hall, which can not be confirmed. This earthquake was also felt in Biel (1875: 59-60), Lausanne (ACVD: DG 288.217) and Geneva (Speng 1682: 140-142).

Seismotectonic setting

Even with due allowance for the remaining location uncertainty, the epicenter of the 1601 earthquake is certainly situated in the Helvetic domain south of the northern Alpine front (Fig. 3). A comparison with the seismity recorded instrumentally since 1975 (Fig. 4) shows that it apparently does not coincide with an area of enhanced seismicity. In fact, over the last 20-30 years the earthquake activity in the Helvetic domain has been significantly greater in the northern Wallis in the west and in the Rhine Valley of St. Gallen in the east. However, the historical record shows that the recent seismic activity in central Switzerland has been exceptionally low and that the last 30 years can not be considered as representative. Both the regions of Altdorf (Uri) and of Sarren (Nidwalden) have been repeatedly the scene of damaging earthquakes in the past. The most recent of these was the event of 1964/03/14 near Sarren, with an estimated moment magnitude of 5.7. This event was part of a sequence of more than 1000 events, which occurred over a
period of a few months. The occurrence of earthquakes clustered in time and space seems in fact to be a characteristic feature of the seismicity in central Switzerland; a similar sequence occurred in 1777 and with lesser intensity also in 1917.

Reliably located hypocenters of recent events show that focal depths are restricted to the upper 15 km of the crust in the Helvetic domain of central Switzerland, whereas they reach depths of around 30 km below the Molasse basin north of the Alpine front (e.g., Deichmann et al. 2000a,b). From fault-plane solutions of several recent earthquakes there is evidence that in central Switzerland focal mechanisms of different types coexist within a small volume: examples of this are the mechanisms of the events of Kerns (reverse) and Sachseln (normal) of 1985. The hypocenters of these two events are only 5 km apart and both at a depth of 1–2 km within the sedimentary cover (Deichmann et al. 2000b). The coexistence within such a small volume of two in principle mutually exclusive mechanisms is indicative of a stress field which is either strongly heterogeneous or which features a small magnitude difference between maximum and minimum principal stress. The latter would imply that earthquakes in central Switzerland can be triggered at relatively low levels of shear stress and that consequently the effective stress on some faults (i.e., the rock strength) is at least locally comparatively low (Deichmann et al. 2000b).

Magnitude assessment and discussion

The quality of the macroseismic conclusion depends on the quantity of detailed eyewitness accounts. The growing literacy in Switzerland in the 16th century and a partly successful conservation of documents in the archives and libraries permitted a reliable reconstruction of the 1601 event, although the macroseismic field shows an inhomogeneous distribution of the reported intensities. Only explicitly described damages are evaluated and represent a minimum value. The higher density of sources to the north of the epicenter allows assigning intensities between VI and VII up to Schaffhausen. A lack of information exists mainly in Unterwalden and in the south of the Lake Lucerne. The data available from the west and the south of Lake Lucerne should be supplemented by investigations on a broader scale in town and parish archives of that region. To date no research has been done in the majority of these smaller archives.

Earthquake parameters of this event in the revised macroseismic Earthquake Catalogue of Switzerland (ECOS) have been determined by a modified Bakun & Wentworth (1997) grid search approach based directly on the individual intensity data points (Filb et al. 2003). The estimated epicentral location is 46.92N/8.36E with an uncertainty of less than 20 km, which corresponds roughly to the area between Sarnen, Engelberg, Altdorf and Lucerne. The resulting macroseismic magnitude, Mm, which has been calibrated to correspond to moment magnitude, Mw, is 6.2, with an uncertainty of less than 0.5 units. The re-evaluation of the historical records as well as the systematic and consistent reassessment of the macroseismic intensities presented in this article have contributed significantly to a more reliable estimate of both the epicentral location and the magnitude of this earthquake.

At first sight, the damage caused by the 1601 earthquake in central Switzerland and the consequent economic loss appear to be small. However, the risk associated with the possible recurrence of this event should not be underestimated. In fact, over the last 400 years, the population density in the potential epicentral area and the vulnerability of the corresponding infrastructure have increased significantly.

Acknowledgements

This publication was made possible in connection with the revision of the Earthquake Catalogue of Switzerland 2000-2002 (ECOS) at the Swiss Seismological Service. We wish to thank the libraries and archives of Lucerne, Zurich, Schwyz, Altdorf, Sarnen, Sarnen, Engelberg, Zug, St. Gallen, and the Swiss government for their assistance in the search for sources. Philipp Kastner for GIS-support and maps, Toni Hofmann, Zug, for his reports, and Cornelia Masciù, Hunzenschulz, and Karen Rudin, Obermatt, for the proof-reading.

ANNOTATIONS

1. "Dios jamen ja wurff vff vunser thell gross, aber vun vissen nachpuren von Vambrack noch vil grosser. vnd schwerrer gien mit allem soweit das erschittert den stetis braung, sondern auch die kichen, hinau vnd gesehen, dann ja selbigen vil hefftiger sich erzeigt, ja osch etllich gemerkt gebiund garaug geworden, vnd ja den ubrigsten hattinnen vff wenigern die offen also zergert. Darn ja der gnuten sag nach vsornut, keins offen ja gantzen land merzant oder unbeschwert blienen syche, vnd ja den musch ja dem erdbruden noch lang vnd vil xys meer danach gespirt..." (Vfl den land hatt es glugger- wol den kichen etlichen schaden gebus: auch die glogkhenbrünn erorscht, das die glogkhe angegeschicth, aber am meisten ja in land Vadderwoden...). Es hatt onsche osch erdbruden vff dem land an kichern ort schädlich vnd vorgünstern erorscht dann ja dissem land Vadderwoden wie ja dann das landvölck selbs haw erzellen bofenn vnd das ausechschle akkothalben ja land, so ja durchreicht, selbs geschehen an gebüssen etlichen kleinen vnd grossen vnd sondersch an kichen vnd glogkhenbrünn, die es so hefftig erscherscht, das die glogkhe klein vnd gross sich selbs gefüllt vnd angegeschicth vnd alhos die tieren vnd kichen geschadigt, ja er dichtlich ja merkten abschlagen vnd wider nöwne machen, etlichen aber seniten mit grossen kosten wider erbrunen. (…) Buggertier ja ein dorff an dem Lunceurn zuv ja Vadderwoden geplog etlichen obherthalb Bluesch, der pflaude alsch her erbrunen. An disems beiden orten hatt es auch brotdiv streng gebusen vnd gewisser. Zuz Buggertier hatt es die kichen, die erst by 3 laden nöwne widerunbrunen erbrunen alhos geschadigt, da man sich vergeven, nöwunbrunen gescheff vnd nöwne erbrunen werden müssen." (Cyde: 1399. 898)

2. "Die zwei gemernten thurn des closeox, so hinder an der sattir rings- maur gegen dem Graben stand, hatt es auch zerschutterd vnd schaf dem einen mehr dann vff ein halben schwech (about 15 cm) von der nur dannen gestunden. Danouch ja es kommen an den südlichen thurn der statt patrie, de Oberonth (1) genannt, da hatt es das tuch mit helmknopf vnd sternen an dem gumannter ergerk, so vwisend gegen der stras erblich am thurn statt, überwollen vnd ynhur gegen der statt wents vff das thurn tuch gefelt vnd das tuch gar zerbrochern, alho das die mensche, so jn thurn behei, by 7 personen, ja höch- ster glos jere kehmen gewesen; den sternom hatt es vil schitten wett ja die statt hinyn geforssen vnd den gantzen thurn dermaussen erschutterd vnd überr- schottige spählt zu allen orten geworden, allos das man nötiger noch da bly- ben mögen, jns osch anlert nitt ne heffieren dann das man jnev vff dem grund abschaffen vnd wider vilwenen müssenn. Den nötigens thurn oberhalb duty, der Kättermuth (5) genannt, hatt es auch erscherscht, allos da vff doch
kleine riesig und spitz geworden. Aber den dritten gelisteten thun, so am
nächstesten dahin im Graben statt, den hat es ods beschieden sowol am tach
als auch an den muren, wöllte sich doch bald verbessert worden." (Cysat, 1969:
885-886)

2 Keckermann, B. (1867: 161, 157): "... ex iterariuo parte intimi montani
trauces, quae Underwold in habitab. italim montis altaqur par deserta, ex excell-
septem deoetabar oppressise." Keckermann (1577/73-1608) hat dies aber eine
determinierende influence auf den development der relationship zwischen
theology and the natural sciences.

4 (16) Nunc ego Augusti tactus relinquant / Forinctis templi Tiguriae in urbe / Han die занятесь лев, sed adire in / Io va lumen. Interum audii jabet
expedire / Fruttis fabris, opus in monacum / Vexant: templo melleo
forma hic: / Indie rended. (Gerber, 1602: 4)

Bibliography:

Manuscripts:
ACVD: Lausanne, Archives cantonales vaudoises
StALU: Luzern, Staatsarchiv
AKT 17880. Court records.
SASZ: Schweiz. Staatsarchiv
SASZ: Zurich, Staatsarchiv
E II 017.3. Stammheim. Taufen, Een. 1501-1606. 1525-1797.
E II 072.4. Dinhard. Pfarrbuch. 1600-1740.
SBBG: St. Gallen, Stiftsbibliothek
1565. Contains an anonymous manuscript note about the 1601
earthquake.
ZSB: Zurich, Zentralbibliothek, Handschriftenabteilung
Ms. S 156. Nr. 4 (p.32f). Gerber Gabriel (1602): Terrearmnotus annis MDCC September VIII. A print bound to the manuscript
texts of the Soteriologia. Not catalogued.
ZHBLU: Luzern, Zentral- und Hochschulbibliothek
Miscellaneous codes in the Familienarchiv Ambach.
ZUGAD: Zoug, Archäologischer Dienst
Castle of Zug and chapel St.Niklaus at Oberwil. Unpublished
archaeological reports and photographs by Toni Hofmann,
Archäologischer Dienst des Kantons Zug, copy at the Institute
of Geophysics, ETHZ.

REFERENCES

Alessandrini, P. 1984: Problèmes de méthode relatifs à l'étude des séismes
mittelâge. In: Tremblements de terre, Histoire et Archéologie, Actes
Colloque, Valleronne, pp. 221-226.
– 1990: Les séismes en Europe occidentale de 394 à 1299. Nouveau cata-
and magnitude from seismic intensity data. Bull. Seismol. Soc. Amer. 87,
1902-1931.
Baxaiana, M. 1901: I Terremoti d’Italia. Saggi di Storia, Geografia e Bibli-
ografia Storica Italiana con 156 stammeufragrammi.
Bertelsmann, E. 1756, 1777, 1786. Mémoires Historiques et Physiques sur les
Tremblements de Terre,
Burgauer, J. 1651: Christlicher / gründlicher Unterricht Von den Erd-
böumen. Dorf: Dielegerigen Natur / Eigenschafft / und villiger ander-
scheid / ursprung und Heckenomn / wüerkung und bedeucht eigentliche
beschrieben und dargestan wirt: Aus heiliger Gottlieb Schrifft / ... /
bis auf den / der Arno 1601, den 8. September gefolget / erklärt und
bestätigt: Durch Johann Burgerw / der Arntsegenen Doczgen zu
Schaffhausen. Getzuckt zu Zürich Durch Joh. Heinrich Hamberger ...
1651.
Cysat, R. 1969: Collectanea Chronica und denkwürdige Sachen pro Chronica
Lacustertio et Helvetiae. Erste Abteilung, Stadt und Kanton Luzern.
Erster Band, Zweiter Teil, Collectanea Chronica und denkwürdige Sachen
zur Geschichte der Stadt Luzern. Bearbeitet von Dr. phil. Josef Schmid.
Mit dem Teil farbigen Abbildungen im Text und auf Kunstruckstahlen.
Diebst Dietrich Verlag Luzern. Im Osten und Forschungen zur Kul-
turgeschichte von Luzern und der Innerschweiz, Hg. von Joseph Schmid.
Band 4, Zweiter Teil.
Deuchmann, N., Bax, M., Braunmüller, J., Ballarini, D., Bay, F.,
Delouis, B., Fauth, D., Giardini, D., Kastrop, U., Kind, F.,
Krausser, U., Kühne, W., Rothfussberger, S., Schulz, T.,
Sailer, S., Sellami, S., Spühler, E. & Wiemken, 2000a: Erdat-
quakes in Switzerland and surrounding regions dating 1999. Eoslog. geol.
Geb. 993. 905-499.
Wet.
93. 91 pp.
DOM: Databank der ausserchonicischen territorienn der italienischen
bei diopne della soltia del camino. http://emilia-in.it/indexe DOM/
Dittler, R. 1928: Bluder Klimes, Die ältesten Quellen über die seligen Niko-
Faul, D., Giardini, D., Bay, F., Bernadini, F., Braunmüller, N., Furrer, M.,
Gänser, F., Gehler, M., Benegger, D., Jemmes, H.,
Kauli, F., Kohlen, F., Marzabadi, O., Ritz, M., Scheidegger, C.,
Schulz, S., Schmuckleiter, D., Schwarz-Zanetti, G., Steynm, S.,
Sailer, S., Wiemken, S. & Wiemken. 2003: Earthquake Catalogue of Switzerland
(ECOS) and the related macroseismic database. Eoslog. geol.
Geb. 992. 219-236.
Gerber, G. 1662: Terrae motus annis MDCC September VIII. Sign.: ZSB-G:
Ms. S 156, Nr. 4 (p.320).
Grierson, J. 1628: Katteie Fönsler. Chronik: Oder / Sammuratorischen Begrieff aller
denkwürdigen Sachen und Händeln / so sich von vierzentenundhundert
Jahren bis auf das MDC. XXIV Jahr / in und bey der Stadt Basel / mit
grossen Poistation / und anderen beachtlichen Führern und Herren / zu
Kriegs- und Friedenszeiten zugetragen: Und was sonsten für Getathen
von Gericht Gottes dero begegnet: So wol auss geschieden / als
gestreckten Chroniken / oder anderen wahrhaftigen Reichtum / zusammen
getragen Durch Johann Goea Goethendier debselten. Geteek zu
Basel Durch Johann Jacob Gemät. 1624.
Groth, H. 1991: Taschenbuch der Zeichentechnik des deutschen Mittel-
zahl- und der Neuernt.
Gesellschaft. Sémin. 15.
Heer, G. 1975: Aus der Vergangenheit von Kloster und Tal Engelberg 1200-
1970.
Keckermann, B. 1617. 1617: Contemplatio gemina prior, ex generalis physica
dei altera, ex speciali terrae notitio: Perissominum illo stupendo, qui fact
Anno 1601, mense Septembris, Scripta a Bartholomaeo Keckermanno et
mane tertio edita. Hinriq: Apud Guilliemum Antoniam. MDCCL.
Lanc, C. 1692: Historisch-Theologischer Grundriss der alt- und jüngsten
Christlichen Welt. 2 Bände.
Martin, M. 1907: 1975: Eigentliche und handliche abzustrachtn der länd-
Montander, F. 1842/43: Les séismes de forte intensité en Suède. In: Revue
Oertel, L. 1997-98: Modelli esecutivi per la determinazione dei parametri
fini relativi agli eventi storici, Università degli Studi dell’Insubria Sede
di Como Facolta di Scienze Matematiche. Ph.èse e Naturali Corso di Lon-
da in Finse.
Oertel, L. & Albury, P. 1998: Investigation of the 1601 and 1616 Engelberg
BIRS-CNIR-Mil-
nano, 10 pp.

The earthquake in Unterwalden on September 1601 449

Manuscript received July 30, 2002
Revision accepted June 16, 2003.